Nonlinear maps preserving the mixed triple *-product between factors

نویسندگان

چکیده

Let A and B be two factors. In this paper, it is proved that a not necessarily linear bijective map ? : satisfies ?([A, B]* C) = [?(A), ?(B)]* ?(C) for all A, B,C if only *-isomorphism, conjugate the negative of or *-isomorphism.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...

متن کامل

The second dual of strongly zero-product preserving maps

The notion of strongly Lie zero-product preserving maps on normed algebras as a generalization of Lie zero-product preserving maps are dened. We give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also some hereditary properties of strongly Lie zero-product preserving maps are presented. Finally the second dual of...

متن کامل

Spectrum Preserving Linear Maps Between Banach Algebras

In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.

متن کامل

on strongly jordan zero-product preserving maps

in this paper, we give a characterization of strongly jordan zero-product preserving maps on normed algebras as a generalization of  jordan zero-product preserving maps. in this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly jordan zero-product preserving maps are completely different. also, we prove that the direct p...

متن کامل

Redundancy Reduction with Information Preserving Nonlinear Maps

The basic idea of linear Principal Component Analyses (PCA) consists in decorrelating coordinates by an orthogonal linear transformation. In this paper we generalize this idea to the nonlinear case. Simultaneously we will drop the usual restriction to gaussian distributions. The linearity and orthogonality condition of linear PCA is substituted with the condition of volume conservation in order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2023

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2308397z